Bibliographic Metadata

Title
Zwangsbeanspruchungen im Brückenbau zufolge Temperatureinwirkungen: : Lösungen zur wirtschaftlichen Dimensionierung von Brückentragwerken und -lagern / vorgelegt von: Daniel Vuckovic
Additional Titles
Constraining forces in bridge constructions as a consequence of temperature effects:Solutions for an economic dimensioning of bridge support structures and bearings
AuthorVuckovic, Daniel
Thesis advisorVill, Markus
Published2018
Descriptionix, 107 Blatt
Institutional NoteWien, FH Campus Wien, Masterarb., 2018
Date of SubmissionJuly 2018
LanguageGerman
Document typeMaster Thesis
Keywords (DE)Brücke / Dilatation / Einwirkung / Integralbrücke / Lager / Schwankung / Temperatur / thermische Trägheit / Überbau / Übergangskonstruktion / Zuverlässigkeit / Zwangsspannung
Keywords (EN)bridge / dilatation / stress / integral bridge / bearing / variation / temperature / thermal inertia / superstructure / transition / reliability / constraining stress
Keywords (GND)Brückenbau / Tragwerk / Beanspruchung / Baustoff
URNurn:nbn:at:at-fhcw:1-5577 Persistent Identifier (URN)
Restriction-Information
 The work is publicly available
Files
Zwangsbeanspruchungen im Brückenbau zufolge Temperatureinwirkungen: [9.52 mb]
Links
Reference
Classification
Abstract (German)

Im Zuge dieser wissenschaftlichen Arbeit werden Lösungen zur wirtschaftlichen Dimensionierung von Brückentragwerken und -lagern in Hinblick auf thermische Einwirkungen untersucht. Für die Bemessung von Brücken weist das Lastmodell der ÖNORM EN bzw. ÖNORM B 1991: Einwirkungen auf Tragwerke, Teil 1-5: Allgemeine Einwirkungen - Temperatureinwirkungen ein hohes Zuverlässigkeitsniveau auf, deren Wirtschaftlichkeit und Zweckmäßigkeit im Rahmen dieser Arbeit untersucht werden sollen. Die Optimierung des Temperaturlastmodells unter Einhaltung der Versagenswahrscheinlichkeit gemäß Eurocode

Abstract (English)

This thesis deals with solutions for an economic dimensioning of bridge superstructures and bearings with regard to thermal actions. For the design of bridges, the load model by the ÖNORM EN and ÖNORM B 1991: Actions on structures, Part 1-5: General actions - Thermal actions seems to have an uneconomically high reliability level. The optimization of the load model for thermal actions in compliance with the operative failure probability appears to be an appropriate measure to increase the cost efficiency of bridge construction parts.

After explaining the probabilistic backgrounds of the determination of actions on structures according to the Eurocode 0, the causes of thermal dilatations and constraining forces for bridges will be explored. Based on monitoring data of several bridges in Austria, the consequences of thermal actions depending on building material, section dimensions and bearing will be analyzed. In this regard, the thermal inertia of concrete constructions results in a high resistance against short-term variations of external air temperature. Because of the reduction of thermal stress on the structure, the correlation between air temperature and uniform bridge temperature component by Eurocode 1 will be investigated and modified in accordance with probabilistically evaluated measurement data of the Austrian Central Institute for Meteorology and Geodynamics.

For further optimization of the load model for thermal actions, the seasonal variations of air temperature will be analyzed. The statistical evaluation of temperature date for chosen towns shows that the scattering of seasonal fluctuations in Austria are lower than expected according to ÖNORM B 1990-2. Therefore, it is recommended to change the partial safety factor Q,T from 1,35 to 1,25 for the design of bearings and transitions.

In addition to that, the probabilistically determined 98 % quantiles of external air temperature prove that the return period of the characteristic value of Tmax and Tmin pursuant to ÖNORM B 1991 Part 1-5 is much longer than 50 years. Therefore, the National Application Document could be adapted to enable an economic dimensioning of bridges. To integrate properties of atmosphere and terrain such as running waters into the load model for thermal actions on structures, further bridges have to be monitored.

Stats
The PDF-Document has been downloaded 3 times.